Conformational Analysis of 4-Trifluoromethyl-1,3-dioxane

V. V. Kuznetsov ${ }^{a, b}$, A. E. Kuramshina ${ }^{\text {a }}$, and S.A. Bochkor ${ }^{\text {a }}$
${ }^{a}$ Uffa State Petrolic Technical University, Ufa, 450075 Russia
${ }^{b}$ Institute of Physics of Molecules and Crystals, Ufa Scientific Cente, Russian Academy of Sciences
e-mail: kuz@anrb.ru

Received March 12, 2009

DOI: 10.1134/S1070428009080272
The interest to the structural investigation of 1,3-dioxanes, six-membered heteroanalogs of cyclohexane, originates from the features of their structure (the presence of two heteroatoms separated by $s p^{3}$-carbon atoms), from their valuable pharmacological properties, and also from the application to the fine organic synthesis [1-5]. In the last decade computer simulations play an important role in conformationsl studies of such compounds. It was shown in particular that the conformational isomerization of unsubstituted 1,3 -dioxane and also of 2,2-, 4,4-, and 5,5-dimethyl-1,3-dioxanes occurred between two degenerate in energy invertomers of chair (C and C^{*}), and of 2-methyl-1,3-dioxane, between the conformers of equatorial and axial chair $\left(C_{e}\right.$ and $\left.C_{a}\right)$ along two materially equivalent paths [6-9].

This study is dedicated to the computer simulation of the paths of conformational isomerization of 4-trifluoro-methyl-1,3-dioxane (I) by nonempirical quantum-chemical approximations RHF//STO-3G and $6-31 \mathrm{G}(d, p)$ in the framework of software HyperChem [10] under the

C_{e}

$1,4-T(1)$

C_{a}

1,4-T(2)

$2,5-T_{e}$

$3,6-T_{e}$

$2,5-T_{a}$

conditions simulating the behavior of the molecules of this substance in the gas phase.

It follows from the data of ${ }^{1} \mathrm{H}$ NMR spectra of individual stereoisomers of 4-trifluoromethyl-5-methyl-1,3-dioxane that the molecules of 1,3-dioxane I exist at room temperature prevailingly in the conformation of equatorial chair $\left(C_{e}\right)$ [11].

We revealed for the first time the general pattern of the conformational transformations and the character of the intermediate minima on the potential energy surface (PES) for the molecules of the compound in question.

The general pattern suggests a multicomponent conformational equilibrium between the C_{e} and C_{a} forms

Minima on PES of 4-trifluoromethyl-1,3-dioxane

Basises	Relative energy of conformers $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)^{\mathrm{a}}$							
	C_{a}	$1,4-T(1)$	$1,4-T(2)$	$2,5-T_{e}$	$2,5-T_{a}$	$3,6-T_{e}$	$3,6-T_{a}$	
STO-3G	1.9	4.8	5.0	4.2	6.2	4.5	5.8	
$6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$	2.1	5.5	4.7	4.0	5.8	4.8	6.0	

${ }^{2}$ With respect to form C_{e}.
with a high extent of involvement of flexible forms 1,4-, 2,5-, and 3,6-T. It was established, that conformer C_{e} corresponded to the main minimum, and form C_{a} corresponded to the nearest local minimum (see the table). Further in the energy scale are located the flexible forms in different sequence depending on the calculation basis. The highest energy level corresponds to form 2,5-$T_{a}(\mathrm{STO}-3 \mathrm{G})$ or $3,6-T_{a}[6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})]$. Hence the conformers C_{e} and C_{a} undergo interconversion along six nonequivalent paths, and each flexible form can be involved simultaneously into seven conformational transformations.

The obtained scheme of the conformational isomerization of dioxane I resembles a spherical map describing the main conformations of six-membered rings in a polar coordinate system in dependence of folding
parameters: the poles of the tentative sphere correspond to the chair conformers, and the flexible forms are situated on the equator [12-14]. Besides the data obtained show the more complex character of the potential energy surface of the compound under study than that of the unsubstituted 1,3-dioxane [7, 8] and 2-methyl-1,3-dioxane [9] due to the appearance of an additional number of flexible forms. This is caused by the general decrease in the symmetry of the heterocyclic ring owing to the presence of one substituent at the atom C^{4}.

REFERENCES

1. Rakhmankulov, D.L., Karakhanov, R.A., Zlotskii, S.S., Kantor, E.A., Imashev, U.B., and Syrkin, A.M., Itogi nauki i tekhniki. Tekhnologiya organicheskikh veshchestv
(Results if Science and Technics. Technology of Organic Substances), Moscow: VINITI, 1979, vol. 5, p. 6.
2. Kuznetsov, V.V., Khim. Geterotsikl. Soedin., 2006, p. 643.
3. Kuznetsov, V.V., Izv. Akad. Nauk, Ser. Khim., 2005, p. 1499.
4. Orville-Thomas, W. J., Internal Rotation in Molecules, London: Wiley, 1974.
5. Freeman, F. and Uyen, Do, K., J. Mol. Struct. (Theochem)., 2002, 577, vol. 43.
6. Kuznetsov, V.V., Kuramshina, A.E., and Bochkor, S.A., Fundamental'nye issledovaniya, 2006, vol. 3, p. 87.
7. Kuramshina, A.E., Faizullin, A.A., Bochkor, S.A., and Kuznetsov, V.V., Bash. Khim. Zh., 2004, vol. 11, p. 81.
8. Mazitova, E.G., Kuramshina, A.E., and Kuznetsov, V.V., Zh.

Org. Khim., 2004, vol. 40, p. 615.
9. Kuramshina, A.E., Bochkor, S.A., and Kuznetsov, V.V., Zh. Org. Khim., 2006, vol. 42, p. 629.
10. HyperChem, 7.01. Trial version. www.hyper.com.
11. Kamalov, G.L., Sharygin, V.N., Kuz'min, V.E., Nekhoroshkov, V.P., and Sidorov, V.I., Vopr. Stereokhim., 1977, vol. 6, p. 106.
12. Zefirov, N.S. and Palyulin, V.A., Dokl. Akad. Nauk SSSR, 1980, vol. 252, p. 111.
13. Zefirov, N.S., Dashevskaya, E.E., and Palyulin, V.A., Dokl. Akad. Nauk SSSR, 1987, vol. 292, p. 1380.
14. Zefirov, N.S., Palyulin, V.A., and Dashevskaya, E.E., J. Phys. Org. Chem., 1990, vol. 3, p. 147.

